Between Lines of Code: Unraveling the Distinct
Patterns of Machine and Human Programmers

Yuling Shi! Hongyu Zhang? Chengcheng Wan? Xiaodong Gu'*

1Shanghai Jiao Tong University,QChongqing University,’East China Normal University

Al-Generated Code Detection

Why Distinguish Al-Generated Code?

Unclear Code Source; Challenges Academic & Interview Fairness

Requires Strict Review & Testing; Not Guaranteed Optimal or Fully
Compliant

Previous Approach

* DetectGPT analyzes the likelihood score discrepancies between original and

perturbed texts.

(Mitchell et al., 2023)

DetectGPT &
(1) Perturb o5 (2) Score (3) Compare
ooy SRS | Mt i
g2 T~y v

, DB‘Ot

— PN Ly, 22 7.

x/"mm;:b 592 —> G PT‘3 — p(:’f;2) N = p(CEZ)
M*»;;:%N -~ — p(in)
Yes No
v v

& * from GPT-3

() x from other source

Previous Approach

« SWEET watermarks the code generation model to embed special features.

centerpoint sum

distances []
number
distance

m a distances

(Lee et al., 2024))

Previous Approach

o GPTSniffer trains a supervised CodeBERT model as the classifier.

@ (000000 Trqined
| .?‘ i ‘ weights
E Extractor Tokenlzer O PyTorch
CodeSearchNet)
ChatGPT
f E— @ P ‘
8 Input code Tokenizer Code generated

by ChatGPT

(Nguyen et al., 2024)

Our Contribution

e A of Al and human’s codes,
focusing on diversity, conciseness, and naturalness.

° A Al-generated code

Empirical Analysis Design

Py

S
Dimension Metrics

Lexical

Diversity [Vocabulary for different parts of code}

{} Conciseness { Number of tokens and lines of code }

MACHINE

CODE

Naturalness [Token likelihood and rank }

Dataset Collection

e Source: 10,000 Python functions sampled from CodeSearchNet.

e Model: CodelLlama (7B) as the code generation model.

* Prompt: Function signatures and comments as prompts.

Results on Lexical Diversity

A
o

1.0

Proportion at T

40.1%

=

23.2%32.29%

=
u

e
&

S
&)

5 590.0%10.9%
% 6.6%
>
<&
)

Finding 1: Al's code use fewer identifiers, more literals and comments.

Logl0(Vocabulary Size)

o
e

Human
Machine

orl
o

0.5

1.0

Logl0(Text Length)

Finding 2: Al's code shows a preference for a limited set of frequently-
used tokens.

Results on Conciseness

1.0%

Ity

Dens

0.5%

0.2%

0.0%

0.8%

\ \
Human

W Machine

Count

100 200 300 400 500

Density

12.5%

10.0%

Human

[Machine |

7.5%

5.0%;

2.5%"

0.0%

Count

60

Finding 3: LLM's code is generally more concise, with fewer tokens and

lines, while human code is more varied.

Results on Naturalness

L4l Human > Human Log Likelihood
mmm Machine 304 | W Machine Category Mackine — Human ~
keyword -1.701 -2.128 0.428
identifier -0.459 -0.874 0.415
literal -0.506 -1.364 0.858
operator -0.938 -1.835 0.897
symbol -0.868 -1.639 0.771
comment -1.503 -3.028 1.525
whitespace -1.131 -2.740 1.609
4 -3 2 -1 0o 00 05 10 15 2.0 ALL -0.827 -1.658 0.831

Log Likelihood Log Rank

Finding 4: LLM's code exhibits higher naturalness compared to human code.

Finding 5: The most significant naturalness differences are in comments and
stylistic tokens like whitespaces.

12

DetectCodeGPT: A Zero-shot Code Detection
Approach

o\ualitg'
\Content

13

Methodology

e After perturbations:

> Al-generated code will exhibit significant changes in naturalness

o Human-written code

A
Voun k
\at W ~ pg (%)
R, \
o))
=

in naturalness.

real

| X ey phuman(x)

Log likelihood

Fake/real sample

L A

Perturbed fake/real sample
®O0

14

Stylized Perturbation

 Before Perturbation:

def calculate_tax(income,tax_rate):
1f income>10000:
return incomex@.?2
else:
return incomex0.1

o After Perturbation:

def calculate_tax(income, tax_rate):

1T income @>@ 10000:
return i1ncomex0. 2

else:
return income@x@@,1

15

Stylized Perturbation

 Before Perturbation:

def calculate_tax(income,tax_rate):
1f income>10000:

return incomex0. 2
else:
return incomex0.1

o After Perturbation:

def calculate_tax(income, tax_rate):

1T income @>@ 10000: <
return i1ncomex0. 2

else:
return income@x@@,1

16

Detection Performance

1.0
#3:7% +2.9%
+2.8%

0.9 +25.2%
] 0
= +5.2%
©
g 0.8
o [DetectGPT
E P Log Likelihood
t I Log Rank
) Il DetectCodeGPT
= 0.7
3]
Q
b
[T}
(a]

) I I

0.5 ! ' 1 1 1

Phi-1 StarCoder WizardCoder CodeGen2 CodeLlama

~7.6% higher then pervious SOTA

17

Cross-Model Detection

In real world scenario, the source LLM is usually unknown.

Incoder
Phi-1
StarCoder

WizardCoder

Source Model

CodeGen2

CodelLlama

Detection Model

We can use one model to detect contents from another.

A\

N

Meta

S

18

Case Study

import os
import re

if not os.path.isdir(path): o

raise ValueError('ss is not a directory' % path) Truth: @

if not isinstance(include, (list, tuple)): log p(x): i
include = [include]

if not isinstance(exclude, (list, tuple)): Log Rank: B
exclude = [exclude]

@

T DetectCodeGPT:
exclude.append(r'\.pyc$’)

lllustrating Al's structured coding patterns

19

Case Study

T3
save_test = random() > 0.8
audio = load_audio(fn)

num_chunks = 1en(audio%{4¢hunk_size

listener.clear()
for i, chunk in en erate(chunk‘bidlo(audlo, Iﬂynk size)):

print('\r' + str(i % 100./num_chunks) + '%')
buffer = update((buffer[len(chunk):1, chunk))

conf = listener.update(chunk)

Truth: &
log p(x): @

Log Rank: &

DetectCodeGPT:

Revealing human’s randomness in coding.

20

Future Directions

©)

Language: Investigate across

o Performance: Explore in Al's codes.
o Attack: Design to evade detection.
o Defense: Propose against these attacks.

21

Thank you for your attention

Our data and code are available at https://github.com/YerbaPage/DetectCodeGPT

Feel free to reach out for any question or collaboration at yuling.shi@sjtu.edu.cn

22

https://github.com/YerbaPage/DetectCodeGPT
mailto:yuling.shi@sjtu.edu.cn

