Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers

Yuling Shi¹, Hongyu Zhang², Chengcheng Wan³, Xiaodong Gu^{1*}

¹Shanghai Jiao Tong University, ²Chongqing University, ³East China Normal University

Al-Generated Code Detection

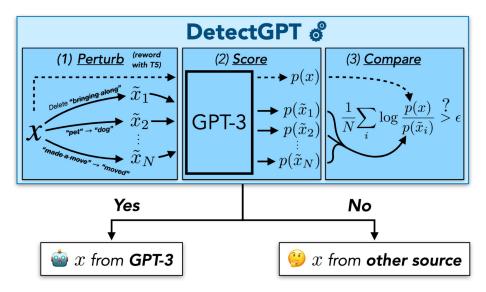
Why Distinguish Al-Generated Code?

- Plagiarism & Authenticity Concerns:
 - Unclear Code Source; Challenges Academic & Interview Fairness
- Potential Flaws & Quality Issues:

Requires Strict Review & Testing; Not Guaranteed Optimal or Fully Compliant

Previous Approach

 DetectGPT analyzes the likelihood score discrepancies between original and perturbed texts.



• Does not identify the unique patterns of Al-generated code.

(Mitchell et al., 2023)

Previous Approach

SWEET watermarks the code generation model to embed special features.

```
centerpoint = sum(numbers) / len(numbers)
distances = []
for number in numbers:
    distance = abs(number - centerpoint)
    distances.append(distance)

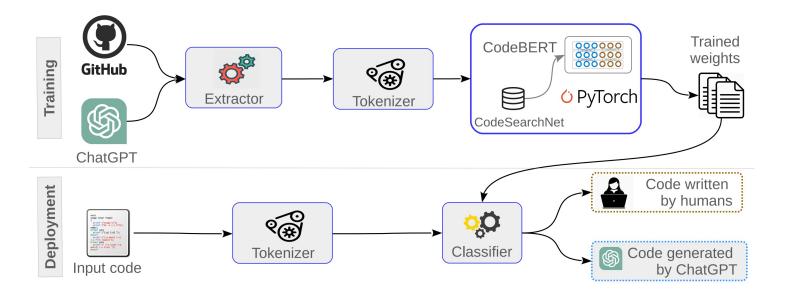
m_a_d = sum(distances) / len(distances)
return m_a_d
```

Only applicable to detect codes from watermarked model.

(Lee et al., 2024)

Previous Approach

GPTSniffer trains a supervised CodeBERT model as the classifier.



• Requires continuous data collection and training.

(Nguyen et al., 2024)

Our Contribution

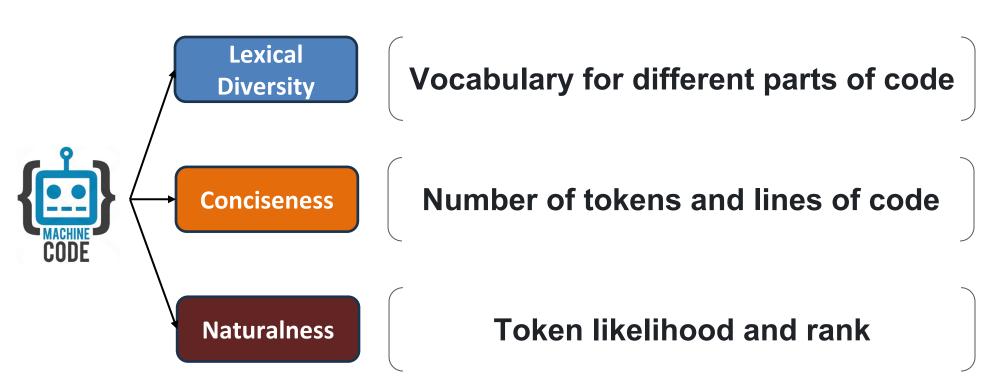
- A comprehensive empirical analysis of Al and human's codes, focusing on diversity, conciseness, and naturalness.
- A novel zero-shot method for detecting Al-generated code

Empirical Analysis Design

What are the differences between AI and human's codes?

Dimension

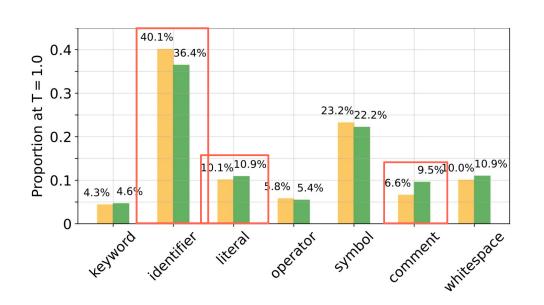
Metrics

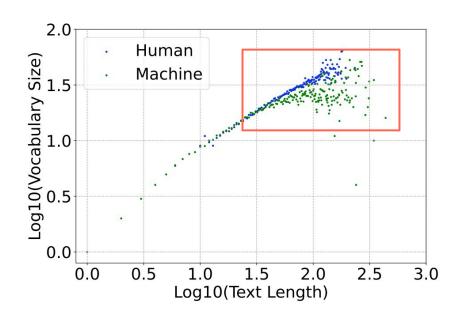


Dataset Collection

- Source: 10,000 Python functions sampled from CodeSearchNet.
- Model: CodeLlama (7B) as the code generation model.
- Prompt: Function signatures and comments as prompts.

Results on Lexical Diversity

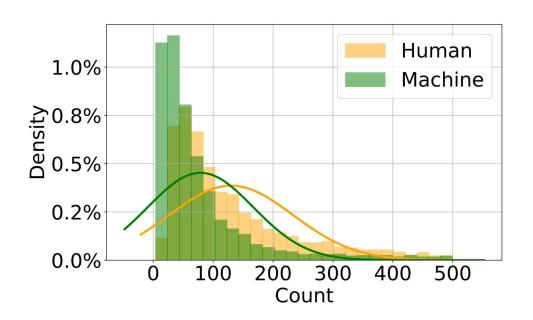


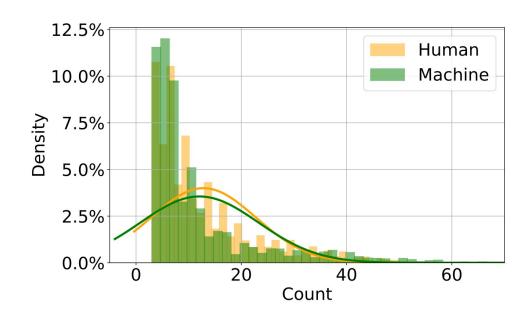


Finding 1: Al's code use fewer identifiers, more literals and comments.

Finding 2: Al's code shows a preference for a limited set of frequently-used tokens.

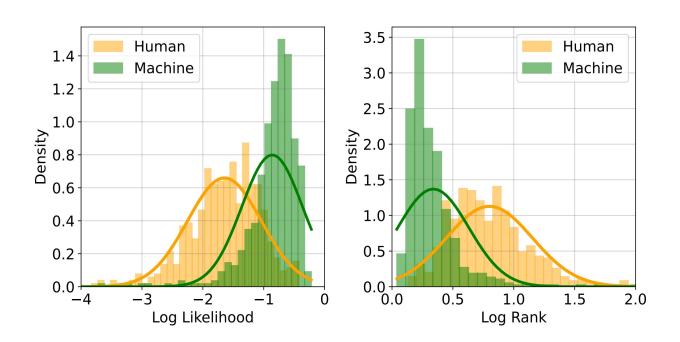
Results on Conciseness





Finding 3: LLM's code is generally more concise, with fewer tokens and lines, while human code is more varied.

Results on Naturalness

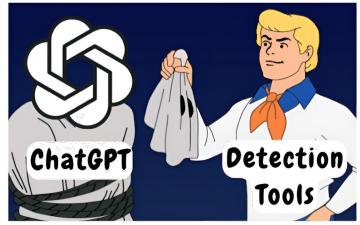


Category	Log Likelihood		
	Machine	Human	Δ
keyword	-1.701	-2.128	0.428
identifier	-0.459	-0.874	0.415
literal	-0.506	-1.364	0.858
operator	-0.938	-1.835	0.897
symbol	-0.868	-1.639	0.771
comment	-1.503	-3.028	1.525
whitespace	-1.131	-2.740	1.609
ALL	-0.827	-1.658	0.831

Finding 4: LLM's code exhibits higher naturalness compared to human code.

Finding 5: The most significant naturalness differences are in comments and stylistic tokens like whitespaces.

DetectCodeGPT: A Zero-shot Code Detection Approach

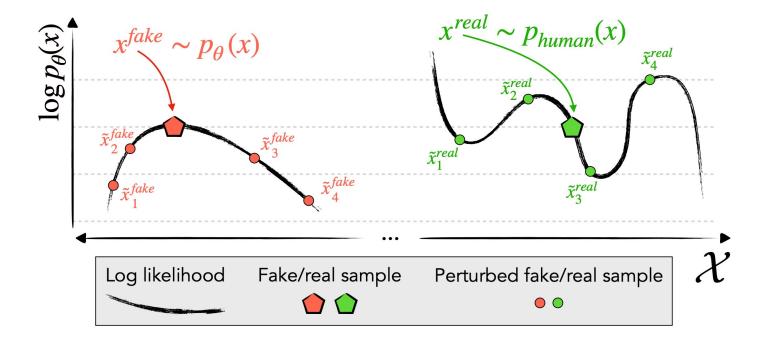


No training data required

Methodology

After perturbations:

- Al-generated code will exhibit significant changes in naturalness
- Human-written code exhibits limited variation in naturalness.



Stylized Perturbation

Before Perturbation:

```
def calculate_tax(income,tax_rate):
    if income>10000:
        return income*0.2
    else:
        return income*0.1
```

After Perturbation:

Randomly Perturb on Spaces and Newlines

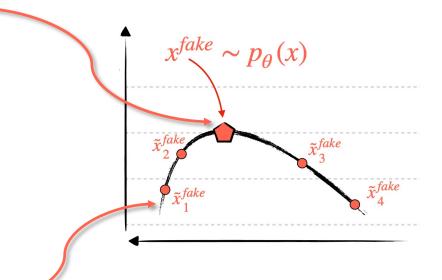
Stylized Perturbation

Before Perturbation:

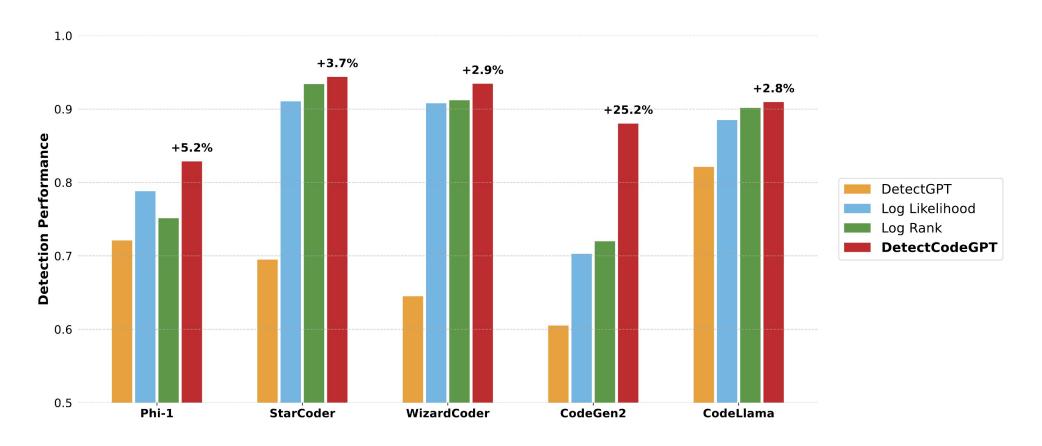
```
def calculate_tax(income,tax_rate):
    if income>10000:
        return income*0.2
    else:
        return income*0.1
```

After Perturbation:

Randomly Perturb on Spaces and Newlines



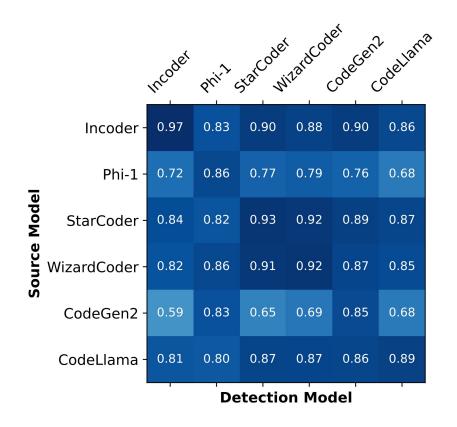
Detection Performance



~7.6% higher then pervious SOTA

Cross-Model Detection

In real world scenario, the source LLM is usually unknown.



We can use one model to detect contents from another.

Case Study

```
import os
import re
if not os.path.isdir(path):
                                                           Truth:
        raise ValueError('%s is not a directory' % path)
(<del>+</del>)
                                                           \log p(x):
if not isinstance(include, (list, tuple)):
        include = [include]
if not isinstance(exclude, (list, tuple)):
                                                           Log Rank: 🖺
       exclude = [exclude]
if not show_all:
                                                           exclude.append(r'\.pyc$')
. . .
```

Illustrating Al's structured coding patterns

Case Study

Revealing human's randomness in coding.

Future Directions

- Language: Investigate across other programming languages.
- Performance: Explore more features in Al's codes.
- Attack: Design adversarial attacks to evade detection.
- Defense: Propose defense strategies against these attacks.

Thank you for your attention

Our data and code are available at https://github.com/YerbaPage/DetectCodeGPT

Feel free to reach out for any question or collaboration at yuling.shi@situ.edu.cn