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Al-Generated Code Detection




Why Distinguish Al-Generated Code?

Unclear Code Source; Challenges Academic & Interview Fairness

Requires Strict Review & Testing; Not Guaranteed Optimal or Fully
Compliant




Previous Approach

* DetectGPT analyzes the likelihood score discrepancies between original and

perturbed texts.

(Mitchell et al., 2023)
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Previous Approach

« SWEET watermarks the code generation model to embed special features.
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Previous Approach

o GPTSniffer trains a supervised CodeBERT model as the classifier.
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Our Contribution

e A of Al and human’s codes,
focusing on diversity, conciseness, and naturalness.

° A Al-generated code



Empirical Analysis Design
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Dataset Collection

e Source: 10,000 Python functions sampled from CodeSearchNet.

e Model: CodelLlama (7B) as the code generation model.

* Prompt: Function signatures and comments as prompts.



Results on Lexical Diversity
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Finding 1: Al's code use fewer identifiers, more literals and comments.
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Finding 2: Al's code shows a preference for a limited set of frequently-
used tokens.




Results on Conciseness
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Finding 3: LLM's code is generally more concise, with fewer tokens and

lines, while human code is more varied.




Results on Naturalness

L4l Human > Human Log Likelihood
mmm Machine 304 | W Machine Category Mackine — Human ~
keyword -1.701 -2.128  0.428
identifier -0.459 -0.874  0.415
literal -0.506 -1.364  0.858
operator -0.938 -1.835  0.897
symbol -0.868 -1.639  0.771
comment -1.503 -3.028 1.525
whitespace -1.131 -2.740 1.609
4 -3 2 -1 0o 00 05 10 15 2.0 ALL -0.827 -1.658  0.831

Log Likelihood Log Rank

Finding 4: LLM's code exhibits higher naturalness compared to human code.

Finding 5: The most significant naturalness differences are in comments and
stylistic tokens like whitespaces.
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DetectCodeGPT: A Zero-shot Code Detection
Approach
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Methodology

e After perturbations:

> Al-generated code will exhibit significant changes in naturalness

o Human-written code
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Stylized Perturbation

 Before Perturbation:

def calculate_tax(income,tax_rate):
1f income>10000:
return incomex@.?2
else:
return incomex0.1

o After Perturbation:

def calculate_tax(income, tax_rate):

1T income @>@ 10000:
return i1ncomex0. 2

else:
return income@x@@,1
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Stylized Perturbation

 Before Perturbation:

def calculate_tax(income,tax_rate):
1f income>10000:

return incomex0. 2
else:
return incomex0.1

o After Perturbation:

def calculate_tax(income, tax_rate):

1T income @>@ 10000: <
return i1ncomex0. 2

else:
return income@x@@,1
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Detection Performance

1.0
#3:7% +2.9%
+2.8%

0.9 +25.2%
] 0
= +5.2%
©
g 0.8
o [ DetectGPT
E P Log Likelihood
t I Log Rank
) Il DetectCodeGPT
= 0.7
3]
Q
b
[T}
(a]

) I I

0.5 ! ' 1 1 1

Phi-1 StarCoder WizardCoder CodeGen2 CodeLlama
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Cross-Model Detection

In real world scenario, the source LLM is usually unknown.
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We can use one model to detect contents from another.
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Case Study

import os
import re

if not os.path.isdir(path): o

raise ValueError('ss is not a directory' % path) Truth: @

if not isinstance(include, (list, tuple)): log p(x): i
include = [include]

if not isinstance(exclude, (list, tuple)): Log Rank: B
exclude = [exclude]

@

T DetectCodeGPT:
exclude.append(r'\.pyc$’)

lllustrating Al's structured coding patterns
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Case Study

T3
save_test = random() > 0.8
audio = load_audio(fn)

num_chunks = 1en(audio%{4¢hunk_size

listener.clear()
for i, chunk in en erate(chunk‘bidlo(audlo, Iﬂynk size)):

print('\r' + str(i % 100./num_chunks) + '%')
buffer = update((buffer[len(chunk):1, chunk))

conf = listener.update(chunk)

Truth: &
log p(x): @

Log Rank: &

DetectCodeGPT:

Revealing human’s randomness in coding.
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Future Directions

©)

Language: Investigate across

o Performance: Explore in Al's codes.
o Attack: Design to evade detection.
o Defense: Propose against these attacks.
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Thank you for your attention

Our data and code are available at https://github.com/YerbaPage/DetectCodeGPT

Feel free to reach out for any question or collaboration at yuling.shi@sjtu.edu.cn
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